A Quest Against Time

- Why timekeeping is hard
- What we can do without guest help
- What we can do with guest help

PART 1 – TIME IS HARD

PART 1 – TIME IS HARD

Not this hard...

$$\Delta p_{2}(NT_{s}) = \sum_{i=1}^{N} [k_{1}e^{-(N-i)T_{s}/T}(1 - e^{-(T_{s}/T)})\Delta p_{1}(iT_{s})] + \sum_{i=1}^{N} [-k_{2}e^{-(N-i)T_{s}/T}(1 - e^{-(T_{s}/T)})\Delta M_{2}(iT_{s})] - \left[\frac{-k_{2}T_{2}}{T}(1 - e^{-(T_{s}/T)})\right] + \sum_{i=1}^{N} \Delta M_{2}(iT_{s})e^{-(N-i)T_{s}/T} + \frac{k_{2}T_{2}}{T}\Delta M_{2}(NT_{s})\right]$$

$$\Delta M_{1}(NT_{s}) = \sum_{i=1}^{N} [e^{-(N-i)T_{s}/T}(1 - e^{-T_{s}/T})\Delta M_{2}(iT_{s})] + \left[-\frac{T_{1}}{T}(1 - e^{-T_{s}/T})[\sum_{i=1}^{N} \Delta p_{1}(iT_{s})e^{-(N-i)T_{s}/T}]\right] + \frac{T_{1}}{T}\Delta p_{1}(NT_{s})$$

$$(26)$$

PART 1 – TIME IS HARD

- Not this hard...
- It's worse

Every measurement is an observation...

And every observation must be consistent....

Not just with itself, but with other clock interrupts

And there are many of these

Some are local entities

And reaching agreement is hard (inter-cpu drift)

And reaching agreement is hard (inter-socket drift)

And reaching agreement is hard (thermal effects)

And reaching agreement is hard (super-scalar execution)

It is hard on baremetal too

On virt, assumptions break

PART 2 – On our own

Interrupts delivered, guest is out

But it still believe it made it

When to deliver next interrupt, hard target

When did guest really process it?

When did guest really process it?

Next time, send many

Takes a lot of cpu

Part 3 – Guest cooperation

Ideally, not rely on interrupts

Read clock timestamp directly (modern linux clocksources)

But if we might, better to compensate in the guest

 Read clock timestamp directly (modern linux clocksources) => and then figure out how many ticks we should account.

Hypervisor tells time

Adjust locally with tsc

Adjust locally with tsc

The picture

tsc

 Δ

tsc base

sys time

Must be done carefully

tsc and host clock may run at different resolutions, usually faster

tsc has issues

Even if everything works ok

tsc

 Δ

tsc base

sys time

Recalibration has serous issues, same as SMP

Worst case? Hit it with a hammer

Thank you