
Tracking filesystem modifications

Jan Kára <jack@suse.cz>

SUSE Labs, Novell

© Novell Inc. All rights reserved

2

Introduction

• Lots of application need to watch for modification of
files or changes of directory hierarchy

– Backup / home directory synchronization

– Desktop search / caching pre-parsed configuration files

– Virus scanning

• Overview of possibilities for tracking changes in Linux

© Novell Inc. All rights reserved

3

Outline

• Simple directory scanning

• Dnotify

• Inotify

• Fanotify

• What Btrfs has for us?

• Recursive modification timestamps

© Novell Inc. All rights reserved

4

Directory scanning

• Read all directory entries using readdir(3)and
stat(2), compare modification time

Pluses
• Works everywhere

Minuses
• Need to stat all the files
 - Polluting caches
 - Slow

• Possible improvements
– Sort statted files by inode number

– Use st_nlink for subdirectory detection

© Novell Inc. All rights reserved

5

Dnotify

• Linux's first attempt for improvement over plain dir
scanning

• Process can register for events about modification

• Mostly of historical interest these days

• Interest in events expressed by calling fcntl(2) on
directory file descriptor

• Events are delivered using signals (siginfo)

• Issues:
– Dirs have to be open while receiving events

– No way to watch single file

– Signals are a poor interface

Inotify
Dnotify done right

© Novell Inc. All rights reserved

7

Inotify interface

• Process can register for events about file / dir
modification

• Setup:
fd = inotify_init1(flags)

wd = inotify_add_watch(fd, “path”, events)

...

events – a mask of event types we are interested on
path – open, close, read, write, create, delete, move to /
from

• Possible to have one shot / repeating event
notification

© Novell Inc. All rights reserved

8

Inotify interface (2)

• Receiving events:
read(fd, buf, bufsize)

receives events of the form
struct inotify_event {

 int wd;

 uint32_t mask;

 uint32_t cookie;

 uint32_t len;

 char name[];

}

• fd is pollable, may be non-blocking

© Novell Inc. All rights reserved

9

Inotify troubles

• Event queue can overflow and events get lost

• Impossible to reliably access changed object
– Tough to implement correct watching of a whole subtree

• Watches pin inodes in memory
– Number of watches limited to 65536 by default unless root

• Time to setup all watches limiting for scarce tasks /
when start time matters

Fanotify

© Novell Inc. All rights reserved

11

Fanotify basics

• Motivated by needs of antivirus scanners
– Verify writes, possibly block reads

• Doesn't supersede inotify
– Limited to superuser

– Does not support directory change notification

• Added in 2.6.36 kernel

© Novell Inc. All rights reserved

12

Fanotify features

• Intent to see events for a given object called mark

• 4 types of events:
– Open

– Close

– Read

– Write

• Marks can be attached to files, directories (can receive
events for all objects in a directory), mount points

• Ignore marks
– Cleared on modification unless flagged

© Novell Inc. All rights reserved

13

Fanotify features (2)

• Marks for mediating open / read of a file
– Operation is suspended until the process which placed the

mark allows or denies access

• Events return with open file descriptor to the object
where an event happened

© Novell Inc. All rights reserved

14

Fanotify interface

• Similar to inotify

• Setup:
fd = fanotify_init(descflags, markflags)

fanotify_mark(fd, flags, events, dfd, “path”)

• flags specify action to happen

– create inode / mountpoint mark, remove mark,
watch children, create ignore mark, create
permanent ignore mark

• events specify type of event

– Open, close, read, write, mediate-open, mediate-
read

© Novell Inc. All rights reserved

15

Fanotify interface (2)

• Receiving events by reading of fd

struct fanotify_event_metadata {

 uint32_t event_len;

 uint32_t vers;

 int32_t fd;

 uint64_t mask;

 int64_t pid;

}

© Novell Inc. All rights reserved

16

Fanotify interface (3)

• When one of mediate events happen, decision is
communicated by writing to fd

struct fanotify_response {

 int32_t fd;

 uint32_t response;

}

© Novell Inc. All rights reserved

17

Fanotify shortcomings

• Unbounded event queues
– Reason for restriction to superuser

– Necessary for AV scanners

– Event merging

• Misses directory events

• Mount point marks either need to process lots of
events or we have to add lots of ignore marks

Persistent change tracking

© Novell Inc. All rights reserved

19

What's that?

• Ability to track down modifications even after reboot
– Possibly even after a crash

• Directory scanning using modification time works

• Inotify / fanotify hard to use

• Needs some filesystem support

Btrfs change tracking

© Novell Inc. All rights reserved

21

Btrfs design (parts)

• Filesystem items kept in a big B-tree

• Copy-on-write
– Changes accumulated into transactions (30s)

• Each item and tree node has transaction ID when it
was written

• Allows for fast (O(m log n)) search for items with given
transaction ID or newer

© Novell Inc. All rights reserved

22

Copy-on-write and transaction IDs

© Novell Inc. All rights reserved

23

Copy-on-write and transaction IDs

© Novell Inc. All rights reserved

24

Copy-on-write and transaction IDs

© Novell Inc. All rights reserved

25

Copy-on-write and transaction IDs

© Novell Inc. All rights reserved

26

Interface

• BTRFS_IOC_SEARCH_TREE

– Interval searches in a tree

– Rather complex with lots of fs details

• btrfs subvol find-new <mntpoint> <transid>

• Superuser only

© Novell Inc. All rights reserved

27

Advantages and disadvantages

• Plus:
– No initialization needed

– All changes persistently tracked

– No extra cost

– Fast scan, selection mechanism for tree intervals

• Minus:
– Specific to btrfs

– 30 second granularity, changes in last 30 seconds not seen

– Superuser only

Recursive modification time

© Novell Inc. All rights reserved

29

Recursive modification time basics

• Not in a mainline kernel

• Filesystem keeps with each directory a flag and a
timestamp

• When a file in a directory is changed, it updates flags
and timestamps starting by that directory as follows:

– while current directory has the flag set

– clear the flag

– set timestamp to current time

– go to the parent directory

© Novell Inc. All rights reserved

30

Recursive modification time usage

• Initialization: Set flag on directory application is
interested in and its subdirectories

– Needed just once per existence of each directory

• When it wants to check for changes, it can skip
subdirectories whose timestamp is smaller than the
time of the previous scan.

• Works for arbitrary number of applications watching
the same directory

– Only scans of this directory are going to happen more often
and thus the cost of keeping flags and timestamps rises

© Novell Inc. All rights reserved

31

Example

/

bin varroot

txt log

messages maillog

.profile

TODO

Flag set

Flag cleared

© Novell Inc. All rights reserved

32

Example

Flag set

Flag cleared

/

bin varroot

txt log

maillog

.profile

TODO messages

© Novell Inc. All rights reserved

33

Example

Flag set

Flag cleared

/

bin varroot

txt log

maillog

.profile

TODO messages

© Novell Inc. All rights reserved

34

Example

Flag set

Flag cleared

/

bin varroot

txt log

maillog

.profile

TODO messages

© Novell Inc. All rights reserved

35

Example

Flag set

Flag cleared

/

bin varroot

txt log

maillog

.profile

TODO messages

© Novell Inc. All rights reserved

36

Example

Flag set

Flag cleared

/

bin varroot

txt log

maillog

.profile

TODO messages

© Novell Inc. All rights reserved

37

Example

Flag set

Flag cleared

/

bin varroot

txt log

maillog

.profile

TODO messages

© Novell Inc. All rights reserved

38

Example

Flag set

Flag cleared

/

bin varroot

txt log

maillog

.profile

TODO messages

© Novell Inc. All rights reserved

39

Example

Flag set

Flag cleared

/

bin varroot

txt log

maillog

.profile

TODO messages

© Novell Inc. All rights reserved

40

Example

Flag set

Flag cleared

/

bin varroot

txt log

maillog

.profile

TODO messages

© Novell Inc. All rights reserved

41

Interface

• Flag is kept in an inode – IOC_GETFLAGS,
IOC_SETFLAGS

• Nanosecond timestamp as system.rtime xattr

© Novell Inc. All rights reserved

42

Advantages

• Requires just once-per-life initialization of each
watched directory

• Scan for changes does not require entering
unmodified directories

• Between two scans, timestamp and flag is changed at
most once (good for frequently modified files)

• Scales well (easily to the whole filesystem)

© Novell Inc. All rights reserved

43

Disadvantages

• Application still has to find which files were modified in
a directory

• Userspace must handle hardlinks and propagation of
information across mountpoints

Measurements

© Novell Inc. All rights reserved

45

Setup

• 300 GB partition on a 1T SATA drive

• 1GB of RAM

• 2.6.36-rc4 kernel

© Novell Inc. All rights reserved

46

Plain directory scan

• Took a compiled kernel tree
– 46878 files in 4255 directories

• Cleaned caches before each run

Average Std dev
Ext3 15.936 0.065
Ext3 + sort 13.569 0.066

Ext3 + nlink 6.062 0.145

Btrfs 17.349 0.754

Btrfs started scanning at 12.5 seconds

© Novell Inc. All rights reserved

47

Btrfs modification tracking

© Novell Inc. All rights reserved

48

Recursive modification time scan

© Novell Inc. All rights reserved

49

Recursive mtime scan detail

© Novell Inc. All rights reserved

50

Conclusion

• Seen several frameworks for event notification
– Dnotify

– Inotify – good general purpose

– Fanotify – good for special cases

• Three methods of persistent modification tracking
– Scanning using modification time – works everywhere

– Btrfs modification tracking – fastest

– Recursive modification time – possible to implement for a wide
range of filesystems

Thank you

	Break-Burst
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

