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Introduction

• Lots of application need to watch for modification of 
files or changes of directory hierarchy

– Backup / home directory synchronization

– Desktop search / caching pre-parsed configuration files

– Virus scanning

• Overview of possibilities for tracking changes in Linux



©  Novell Inc.  All rights reserved

 

3

 

Outline

• Simple directory scanning

• Dnotify

• Inotify

• Fanotify

• What Btrfs has for us?

• Recursive modification timestamps
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Directory scanning

• Read all directory entries using readdir(3)and 
stat(2), compare modification time

Pluses
• Works everywhere

Minuses
• Need to stat all the files
 - Polluting caches
 - Slow

• Possible improvements
– Sort statted files by inode number

– Use st_nlink for subdirectory detection
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Dnotify

• Linux's first attempt for improvement over plain dir 
scanning

• Process can register for events about modification

• Mostly of historical interest these days

• Interest in events expressed by calling fcntl(2) on 
directory file descriptor

• Events are delivered using signals (siginfo)

• Issues:
– Dirs have to be open while receiving events

– No way to watch  single file

– Signals are a poor interface



Inotify
Dnotify done right
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Inotify interface

• Process can register for events about file / dir 
modification

• Setup:
fd = inotify_init1(flags)

wd = inotify_add_watch(fd, “path”, events)

...

events – a mask of event types we are interested on 
path – open, close, read, write, create, delete, move to / 
from

• Possible to have one shot / repeating event 
notification



©  Novell Inc.  All rights reserved

 

8

 

Inotify interface (2)

• Receiving events:
read(fd, buf, bufsize)

receives events of the form
struct inotify_event {

  int wd;

  uint32_t mask;

  uint32_t cookie;

  uint32_t len;

  char name[];

}

• fd is pollable, may be non-blocking
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Inotify troubles

• Event queue can overflow and events get lost

• Impossible to reliably access changed object
– Tough to implement correct watching of a whole subtree

• Watches pin inodes in memory
– Number of watches limited to 65536 by default unless root

• Time to setup all watches limiting for scarce tasks / 
when start time matters



Fanotify
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Fanotify basics

• Motivated by needs of antivirus scanners
– Verify writes, possibly block reads

• Doesn't supersede inotify
– Limited to superuser

– Does not support directory change notification

• Added in 2.6.36 kernel
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Fanotify features

• Intent to see events for a given object called mark

• 4 types of events:
– Open

– Close

– Read

– Write

• Marks can be attached to files, directories (can receive 
events for all objects in a directory), mount points

• Ignore marks
– Cleared on modification unless flagged
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Fanotify features (2)

• Marks for mediating open / read of a file
– Operation is suspended until the process which placed the 

mark allows or denies access

• Events return with open file descriptor to the object 
where an event happened
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Fanotify interface

• Similar to inotify

• Setup:
fd = fanotify_init(descflags, markflags)

fanotify_mark(fd, flags, events, dfd, “path”)

• flags specify action to happen

– create inode / mountpoint mark, remove mark, 
watch children, create ignore mark, create 
permanent ignore mark

• events specify type of event

– Open, close, read, write, mediate-open, mediate-
read
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Fanotify interface (2)

• Receiving events by reading of fd

struct fanotify_event_metadata {

  uint32_t event_len;

  uint32_t vers;

  int32_t fd;

  uint64_t mask;

  int64_t pid;

}
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Fanotify interface (3)

• When one of mediate events happen, decision is 
communicated by writing to fd

struct fanotify_response {

  int32_t fd;

  uint32_t response;

}
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Fanotify shortcomings

• Unbounded event queues
– Reason for restriction to superuser

– Necessary for AV scanners

– Event merging

• Misses directory events

• Mount point marks either need to process lots of 
events or we have to add lots of ignore marks



Persistent change tracking
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What's that?

• Ability to track down modifications even after reboot
– Possibly even after a crash

• Directory scanning using modification time works

• Inotify / fanotify hard to use

• Needs some filesystem support



Btrfs change tracking
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Btrfs design (parts)

• Filesystem items kept in a big B-tree

• Copy-on-write
– Changes accumulated into transactions (30s)

• Each item and tree node has transaction ID when it 
was written

• Allows for fast (O(m log n)) search for items with given 
transaction ID or newer
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Copy-on-write and transaction IDs
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Copy-on-write and transaction IDs
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Copy-on-write and transaction IDs
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Copy-on-write and transaction IDs
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Interface

• BTRFS_IOC_SEARCH_TREE

– Interval searches in a tree

– Rather complex with lots of fs details

• btrfs subvol find-new <mntpoint> <transid>

• Superuser only
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Advantages and disadvantages

• Plus:
– No initialization needed

– All changes persistently tracked

– No extra cost

– Fast scan, selection mechanism for tree intervals

• Minus:
– Specific to btrfs

– 30 second granularity, changes in last 30 seconds not seen

– Superuser only



Recursive modification time
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Recursive modification time basics

• Not in a mainline kernel

• Filesystem keeps with each directory a flag and a 
timestamp

• When a file in a directory is changed, it updates flags 
and timestamps starting by that directory as follows:

– while current directory has the flag set

– clear the flag

– set timestamp to current time

– go to the parent directory
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Recursive modification time usage

• Initialization: Set flag on directory application is 
interested in and its subdirectories

– Needed just once per existence of each directory

• When it wants to check for changes, it can skip 
subdirectories whose timestamp is smaller than the 
time of the previous scan.

• Works for arbitrary number of applications watching 
the same directory

– Only scans of this directory are going to happen more often 
and thus the cost of keeping flags and timestamps rises
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Example

/

bin varroot

txt log

messages maillog

.profile

TODO

Flag set

Flag cleared
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Interface

• Flag is kept in an inode – IOC_GETFLAGS, 
IOC_SETFLAGS

• Nanosecond timestamp as system.rtime xattr



©  Novell Inc.  All rights reserved

 

42

 

Advantages

• Requires just once-per-life initialization of each 
watched directory

• Scan for changes does not require entering 
unmodified directories

• Between two scans, timestamp and flag is changed at 
most once (good for frequently modified files)

• Scales well (easily to the whole filesystem)
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Disadvantages

• Application still has to find which files were modified in 
a directory

• Userspace must handle hardlinks and propagation of 
information across mountpoints



Measurements
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Setup

• 300 GB partition on a 1T SATA drive

• 1GB of RAM

• 2.6.36-rc4 kernel
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Plain directory scan

• Took a compiled kernel tree 
– 46878 files in 4255 directories

• Cleaned caches before each run

Average Std dev
Ext3 15.936 0.065
Ext3 + sort 13.569 0.066

Ext3 + nlink 6.062 0.145

Btrfs 17.349 0.754

Btrfs started scanning at 12.5 seconds
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Btrfs modification tracking
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Recursive modification time scan
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Recursive mtime scan detail
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Conclusion

• Seen several frameworks for event notification
– Dnotify

– Inotify – good general purpose

– Fanotify – good for special cases

• Three methods of persistent modification tracking
– Scanning using modification time – works everywhere

– Btrfs modification tracking – fastest

– Recursive modification time – possible to implement for a wide 
range of filesystems



Thank you
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