

Design and implementation of a
DECT stack for Linux

Patrick McHardy <kaber@trash.net>
Linux Kongress 2010, Nürnberg

http://dect.osmocom.org/

mailto:kaber@trash.net

About

This presentation will present a DECT stack for
Linux, containing all components starting from
baseband drivers up to an asterisk channel driver.

Started around January 2009 after fixing a few bugs
in the dedected.org software and realizing how far
away from a full implementation it was.

Development was primarily motivated by the desire
to fool around with this quite old technology and see
how buggy other implementations really are :)

About

Initially based on the reverse engineered RX-only
Com-on-Air PCMCIA driver from the dedected.org
project, but basically fully rewritten since then.

Mainly written by myself, except for the DSAA
(DECT Standard Authentication Algorithm) and DSC
(DECT Standard Cipher), which have both been
reverse engineered and implemented by the
dedected.org project, who also helped me a lot in
getting TX support into the firmware.

What is DECT?

● DECT stands for “Digital Enhanced Cordless
Telecommunications”, a short-range wireless
communications standard used primarily for
cordless telephony, but also for Data Terminals,
Wireless payment terminals, Baby monitors, Door
openers, Traffic Light control, Industrial control, ...

● Specified by ETSI in 1987, further enhanced since
then.

● Quite similar to other wireless telecommunication
standards like GSM or TETRA.

DECT standards

The DECT standards are split into two parts: DECT
Common Interface (CI) contains the base standard,
DECT application profiles define requirements for
specific applications like telephony, packet radio
service, etc. and build on the Common Interface.
Even the base standard alone is huge and contains
over 1200 pages.

● Common Interface: ETSI EN 300 175-1 – EN 300
175-8

DECT standards
Common Interface

● ETSI EN 300 175-1: Part 1: Overview
● ETSI EN 300 175-2: Part 2: Physical layer (PHL)
● ETSI EN 300 175-3: Part 3: Medium Access
Control (MAC) layer
● ETSI EN 300 175-4: Part 4: Data Link Control
(DLC) layer
● ETSI EN 300 175-5: Part 5: Network (NWK) layer
● ETSI EN 300 175-6: Part 6: Identities and
addressing
● ETSI EN 300 175-7: Part 7: Security features
● ETSI EN 300 175-8: Part 8: Speech and audio
coding and transmission

DECT standards
Profiles

This list contains a small excerpt of the most
common profiles, there are many more:

● Public Access Profile (PAP): ETSI EN 300 175-9:
obsoleted by GAP

● Generic Access Profile (GAP): ETSI EN 300 444

DECT standards
Profiles

● NG DECT Part 1: Wideband speech: ETSI TS 102
527-1

● NG DECT Part 2: transparent IP packet data: ETSI
TS 102 527-2

● NG DECT Part 3: Extended wideband speech
services: ETSI TS 102 527-3

● NG DECT Part 4: Light Data Services, Software
Update Over The Air (SUOTA), content
downloading and HTTP based applications: ETSI
TS 102 527-4

DECT Common Interface

The DECT Common Interface contains the following
parts:

● Part 1: Overview: overview of the system and
protocol architecture, definition of terms

● Part 2: Physical layer (PHL): specifies radio
parameters (modulation, frequency, timing, power
values), TDMA frame structure, packet formats,
synchronization, primitives to higher layers.

DECT Common Interface

● Part 3: Medium Access Control (MAC) layer:
specifies MAC services (broadcast message control
(BMC), connectionless message control (CMC),
traffic-bearer control (TBC), multi-bearer control
(MBC)), definition of logical channels, various
control messages, multiplexing and mapping to
physical channels.

DECT Common Interface

● Part 4: Data Link Control (DLC) layer: specifies
logical data links, C-plane (control plane) services,
U-plane (user plane) services, MAC connection
management

● Part 5: Network (NWK) layer: specifies functions
for Link Control, Call Control, Mobility Management,
Supplementary Services.

DECT Common Interface

● Part 6: Identities and addressing: specifies
equipment related identities and their relationships.

● Part 7: Security Features: specifies authentication
and ciphering processes, key types and key
management, effect of the security features on the
lower layers

● Part 8: Speech and audio coding and transmission:
specified requirements for real-time speech and
other audio services

Basic terminology

● FP (Fixed Part): a DECT base station

● PP (Portable Part): a DECT telephone, terminal, ...

Physical layer
Radio spectrum

● DECT operates in the 1880 MHz -1980 MHz band
(Europe, Asia, Australia, South America) and 1920
MHz – 1930 MHz band (U.S.). Other bands are
defined.

● Carrier width 1.728 MHz, 10 standard carriers,
further carriers (up to a total of 64) defined per
band.

Physical layer
Modulation

DECT supports various modulation schemes:

● 2-level modulation mandatory, optionally up to 64-
level modulation for higher data rates.

● 1.152 Mbit/s per carrier with 2-level modulation

● 6.912 Mbit/s per carrier with 64-level modulation

Physical layer
TDMA

DECT uses a TDMA frame structure for access in
time: frame of 11520 symbols (bits), split into 24
slots of 480 symbols each, 100 frames per second

Physical layer
TDMA slots

TDMA slots may be used only partially or adjacent
slots may be combined. Defined slot formats are:

● Full slot (480 symbols)

● Half slot (240 symbols)

● Double slot (960 symbols)

● Variable capacity slot j (100+j or 104+j symbols)
with 0 <= j <= 856

Physical layer
Physical packet formats

For each slot format, a corresponding physical
packet format exists:

● short physical packet P00 (96 bits)

● basic physical packet P32 (420 or 424 bits)

● high capacity physical packet P80 (900 or 904 bits)

● low capacity physical packet P00j (100+j or 104+j
bits) with 0 <= j <= 856

Physical layer
Data fields

Physical packets contain multiple data fields with
different purposes:

● S-field (synchronization field): 16 bits preamble, 16
bits synchronization word. Contained in all packet
formats, used for clock and packet synchronization.

● D-field (data field): contains higher layer data, its
size is dependent on the packet format.

Physical layer
Data fields

● Z-field: repeats the last 4 bits of the D-field (X-
CRC), used to detect unsynchronized interference
sliding into the end of the physical packet. The P00-
Packet contains no Z-Field, in other packet formats
its use is optional and defined by DECT profiles.

Physical layer
Physical channels

Physical channels provide a connectionless simplex
service for data transmission and are created by
transmitting physical packets on a particular RF-
channel and a particular slot position in successive
frames. TDD is used to create double simplex or
duplex channels.

● Short physical channel R00: Packet P00
● Basic physical channel R32: Packet P32
● High capacity physical channel R80: Packet P80
● Variable rate physical channel R00j: Packet P00j

Physical layer
Timing

Besides providing means to transmit and receive
packets, the physical layer is also responsible for
providing timing to the higher layers. The FP
provides timing to all PPs though the S-Field
synchronization pulse and the TDMA frame
structure. The MAC layer extends the TDMA slot
and frame timing by superimposing a multiframe
structure on the TDMA frame structure.

FPs containing multiple transceivers must have their
transceivers synchronized with an accuracy of 15 +-
2us.

Medium Access Control layer

Due to the special requirements of a cellular
wireless technology, like handling interference,
performing various kinds of handover, privacy,
combined with the strict timing requirements of a
circuit-switched technology and the large number of
diverse applications, the DECT MAC layer is the
most complicated layer in the DECT stack.

Medium Access Control layer
Reference model

Internally the MAC layer is split into two parts:

● Cell Site Functions (CSF) include all functions that
are concerned with only one cell. Multiple instances
of CSF may exist in multi-cell system. These
instances would typically be located in different
physical locations.

● Cluster Control Functions (CCF) functions are
used to control more than one cell. A single instance
of CCF exists in a DECT cluster. Communication
between CSF and CCF is not specified.

Medium Access Control layer
Reference model

Medium Access Control layer
Services

The MAC layer provides three major groups of
services to the higher layers:

● Broadcast message control (BMC): broadcast
service for point-to-multipoint communication in the
direction FP->PP

● Connectionless message control (CMC): provides
bi-directional point-to-point or point-to-multipoint
services to the higher layers

Medium Access Control layer
Services

● Multi-Bearer control (MBC): provides connection
oriented point-to-point service to the higher layers,
using one or more traffic bearers. When using
multiple bearers, data may be distributed for
increased bandwidth, or duplicated for increased
reliability.

Medium Access Control layer

Medium Access Control layer
Logical channels

These services are used to carry a number of logical
data channels, which are multiplexed into physical
packets (various other types and subtypes exist):

● C channels (C
S
and C

F
): higher layer C-plane

channel, transmitted only on traffic bearers, use
error correction based on Automatic Repeat
Requests (ARQ)

● I channels (I
N
 and I

P
): higher layer U-plane

channel, transmitted only on traffic bearers

Medium Access Control layer
Logical channels

● B
S
 channel: slow broadcast channel in direction

FP->PP, transmitted on all traffic, connectionless
and dummy bearers

Medium Access Control layer
Logical channels

The MAC layer also contains a number of internal
control channels:

● Q channel: system information channel: low-rate
channel transmitted on all bearers to provide PPs
with system information, some of which is needed to
lock to an FP.

● N channel: Identities channel: transmitted on all
bearers in both directions, provides PPs with the FP
identity and access rights information for locking to
an FP, used for a MAC layer handshake in the
direction PP->FP on traffic bearers

Medium Access Control layer
Logical channels

● M channel: MAC control channel: transports point-
to-point MAC layer information, used for bearer
setup and handover, encryption activation, service
attribute and bandwidth negotiation, retrieving
channel lists

● P channel: MAC paging channel: carries either
higher layer paging messages or MAC internal
pages to supply MAC layer information to PPs, like
bearer channel switches, supported carriers, blind
transceiver slots, etc. Higher layer information is
transmitted on all bearer types, MAC internal
information in some cases only on specific bearers.

Medium Access Control layer
Cell Site Functions

The Cell Site Functions (CSF) contain:

● Connectionless Bearer Control (CBC): functions
that control one connectionless bearer. Multiple
instances of CBC may exist.

Medium Access Control layer
Cell Site Functions

● Dummy Bearer Control (DBC): functions that
control one dummy bearer. The dummy bearer is
responsible for transmitting the continuous
broadcast service, which is used to transmit system
and timing information necessary for identifying and
locking to a cell (Q- and N-channel). In the absence
of traffic bearers one or two instances of DBC may
exist, when traffic bearers are active they perform
the continuous broadcast service. A DBC controls
one simplex bearer.

Medium Access Control layer
Cell Site Functions

● Traffic Bearer Control (TBC): functions that control
one traffic bearer. Traffic bearers provide continuous
point-to-point transmissions for communicating with
other systems. A TBC controls one duplex or double
simplex bearer. Traffic Bearer Control itself is
controlled by a Multi-Bearer Control instance in the
Cluster Control Functions. Multiple instances of TBC
may exist.

Medium Access Control layer
Cell Site Functions

● Idle Receiver Control (IRC): functions that control
the receiver when idle. IRC is responsible for
scanning for bearer setup attempts and maintaining
channel lists for channel selection. One instance of
IRC per receiver exists, controlling all idle slots.

● Multiplexing and demultiplexing of logical channels
to data fields of physical packets: a complex set of
rules determines when and where to place data in
physical packets.

Medium Access Control layer
Cluster Control Functions

The Cluster Control Functions (CCF) functions
contain:

● Broadcast Message Control (BMC): functions that
control and distribute the cluster's broadcast
information from/to all CBCs, TBCs and DBCs. One
instance of BMC exists per CCF.

● Connectionless Message Control (CMC): functions
that control and distribute the cluster's
connectionless services to to one or more CBCs. At
most one instance of CMC exists per CCF.

Medium Access Control layer
Cluster Control Functions

● Multi-Bearer Control (MBC): functions that control
the multiplexing and management of data
associated with a MAC connection. A MBC
manages one or more (in case of handover or multi-
bearer connections) TBCs. One instance of MBC
exists per MAC connection.

Data Link Control layer

The Data Link Control layer offers two independent
types of service:

● DLC C-plane: Control Plane, provides a reliable
point-to-point or point-to-multipoint service for
transporting error-protected Network layer signalling
information. Additionally a broadcast service is
provided.

● DLC U-plane: User Plane, provides an end-to-end
transport for user information. Several independent
circuit-mode and packet-mode services exist.

Data Link Control layer

Additionally the DLC layer is responsible for opening
and closing MAC connections in response to service
demands and routing DLC frames to and from the
available MAC connections.

Data Link Control layer
C-plane

C-plane data link services are provided by two
entities:

● LAPC entity: the higher LAPC entity provides a
protocol for logical link establishment, frame
transmission with optional flow control and
retransmissions. The LAPC protocol is derived from
the ISDN LAPD protocol, but differs in some
aspects. Each LAPC entity is paired with a lower Lc
entity.

Data Link Control layer
C-plane

● Lc entity: the lower Lc entity is responsible for
selecting the logical MAC channel for frame
transmission (C

S
 or C

F
), buffering and fragmenting

complete LAPC frames from/to the MAC layer as
well as performing checksum generation and
validation. One Lc entity per MAC connection exists.

Data Link Control layer
C-plane

The DLC broadcast service is provided by the Lb
entity. The Lb entity is responsible for buffering and
forwarding higher layer messages from/to the MAC
layer, distributing and transmitting messages over
different clusters and coallition and filtering of
received messages from different clusters. The main
application of the DLC broadcast service is to
transmit and receive paging messages.

Data Link Control layer
C-plane

Data Link Control layer
U-plane

Each U-Plane service is divided into two entities: an
upper LUx entity and a lower FBx entity. The upper
LUx entity contains all service dependent functions,
the lower FBx entity is responsible for buffering and
framing the U-Plane frames to/from the MAC layer.

Data Link Control layer
U-plane

The commonly used LUx entities for voice services
are:

● LU1 (TRUP – TRansparent UnProtected service):
used for narrow band ADPCM G.726 32 kbit/s voice
service

● LU12 (UNF – UNprotected Framed service): used
for wideband G.722 64 kbit/s voice service

Data Link Control layer
U-plane

Network layer

The Network layer contains the following functions:

● LCE – Link Control entity: establishment, operation
and release of C-plane links.

● CC – Call Control entity: establishment, operation
and release of circuit switched calls

● CISS – Call Independent Supplementary Services
entity: support of call independent supplementary
services

Network layer

● COMS – Call Oriented Message Service entity:
support of connection-oriented messages

● CLMS – ConnectionLess Message Service entity:
support of connectionless messages

● MM – Mobility Management entity: management of
 identities, authentication, ciphering, location
updates, key allocation

Network layer

Most Network layer services utilize a TLV encoded
message format termed S-Format messages. The
two exceptions are the paging service and the
CLMS-Fixed service, which use a fixed frame
structure called B-Format messages.

Network layer
S-Format messages

S-Format messages begin with a fixed header
containing a transaction identifier to distinguish
multiple parallel transactions between the same
higher layer entities, a protocol discriminator to
identify the higher layer entity and a message type.

This is followed by zero or more Information
Elements. Most Information Elements use a TLV
encoding, a few fixed length elements exist as well.
Each message type defines a set of allowed and
mandatory Information Elements for both directions.

Network layer
S-Format messages

S-Format message structure:

Network layer
Link Control Entity

The Link Control entity is responsible for the
following tasks:

● Link establishment and maintenance in response
to higher layer service demands

● Routing of new higher layer protocol endpoints to
existing data links

● Submitting (FP) and receiving (PP) paging
messages

Network layer
Link Control Entity

● Uplink and downlink routing of higher layer
messages based on transaction identifiers and
protocol discriminators

Network layer
Call Control

The Call Control entity is responsible for
establishment, maintenance and release of circuit
switched calls. It optionally performs service
negotiation during call setup and service
modification for established calls. Each call is
associated with one or more U-plane service
instances.

Network layer
Mobility Management

The Mobility Management entity provides services
necessary for secure provision of DECT services.
Among these are:

● Access rights procedures: used to “pair” the PP
with the FP. Usually combined with key allocation.

● Key allocation procedure: over-the-air key
allocation, initially converts a 4-digit authentication
code into a 128 bit authentication key, later on can
be used to replace the authentication key.

Network layer
Mobility Management

● Authentication: authentication of the FP, the PP or
the user

● Ciphering: switching of the ciphering state of a
MAC connection

● Location registration: informs the FP about the
location of the PP, can be used to route direct setup
attempts from the FP to the correct cell

Network layer
Mobility Management

● Identity assigment: assignment of a temporary
identity used for paging or a network assigned
identity

● Identification: request of specific identification
parameters from the PP

● Parameter retrieval: exchange of information, f.i.
external handover information

Implementation
Overview

The implementation is split between user-space and the
kernel at the DLC layer. The Physical layer, the MAC
layer and the DLC layer, which all have strict timing
requirements, are contained in the kernel. The DLC
layer offers a socket API to user-space

Additionally a netlink family for management operations,
a raw socket family for receiving and transmitting raw
frames and a TIPC based network protocol for
communication between the CCF and CSF exist in the
kernel.

Implementation
Overview

In user-space a libnl based library (“libnl-dect”) offers
access to the netlink management protocol and a
separate library (“libdect”) implements the NWK layer,
as well as some auxiliary functions. An example IWU is
implemented as asterisk channel driver.

Implementation
Physical layer

The physical layer functionality is provided by a
common transceiver layer as well as a driver for the
SC14421 and SC14424 DECT baseband
processors (Com-on-Air PCI/PCMCIA). Additionally
a virtual transceiver driver for testing purposes
exists.

Drivers register a structure describing their
capabilities and containing a set of callback
functions with the common transceiver layer. The
main task of a driver is to receive and transmit
frames and perform signal strength measurements.

Implementation
Physical layer

struct dect_transceiver_ops {
void (*disable)(const struct dect_transceiver *trx);
void (*enable)(const struct dect_transceiver *trx);

void (*confirm)(const struct dect_transceiver *trx);
void (*unlock)(const struct dect_transceiver *trx);
void (*lock)(const struct dect_transceiver *trx, u8 slot);

void (*set_mode)(const struct dect_transceiver *trx,
 const struct dect_channel_desc *chd,
 enum dect_slot_states mode);

void (*set_carrier)(const struct dect_transceiver *trx,
 u8 slot, u8 carrier);

void (*tx)(const struct dect_transceiver *trx,
 struct sk_buff *skb);

u64 (*set_band)(const struct dect_transceiver *trx,
 const struct dect_band *band);

void (*destructor)(struct dect_transceiver *trx);
const char *name;

u32 slotmask;
u8 eventrate;
u8 latency;

};

Implementation
Physical layer

Drivers process multiple consecutive slots at once
and queue a structure describing all events which
occurred during these slots to the common
transceiver layer.
struct dect_transceiver_event {

struct dect_transceiver *trx;
atomic_t busy;
struct list_head list;
struct sk_buff_head rx_queue;
u8 rssi[DECT_HALF_FRAME_SIZE / 2];
u8 rssi_mask;
u8 slotpos;

};

Due to MAC layer timing requirements, at most 6 slots
may be processed in one batch.

Implementation
Physical layer

The main task of the common transceiver layer is to
process the event batches queued by the drivers in
softirq context and pass them to the MAC layer and
provide two virtual clock sources for RX and TX.

The TX clock leads the RX clock by a static amount
of slots since the baseband processor must be
programmed for upcoming slots before its internal
clock actually reaches those slots. The RX clock,
which is advanced based on events queued by the
transceiver, is by definition in the past.

Implementation
Physical layer

Multiple transceivers can be joined in “transceiver
groups”, the event batches queued for each group
are sorted chronologically before they are replayed
to the MAC layer.

Clock synchronization among the transceivers is
achieved over the air by locking secondary
transceivers to the signal of the primary one. A
simple mechanism to detect and ignore transceivers
which have lost synchronization exists.

Implementation
Physical layer

Additionally the common transceiver layer performs
some book-keeping functions to keep track of the
state of a transceiver (locked/unlocked) and
individual slots (available/in use) and offers a few
simple helper functions for packet transmission,
transceiver maintenance as well as slot and carrier
calculations.

Implementation
Physical layer

Transceivers export some state and statistics
through the netlink API, which can be viewed in
userspace using an example program from libnl.

In this example the transceiver is running as tertiary
transceiver attached to a FP (visible by the <sync>
indication) and is handling one ciphered MAC
connection. Slots 12-22 perform the FP's tertiary
scan for setup attempts.

dect-transceiver-list –name trx2

Implementation
Physical layer

DECT Transceiver trx2@cell0:
Type: sc1442x
RF-band: 00000
Events: busy: 0 late: 970

slot 0: <tx,cipher> carrier: 2 (1893.888 MHz)
 RX: bytes 296 packets 37 a-crc-errors 8 x-crc-errors 0 z-crc-errors 0
 TX: bytes 4464 packets 93
slot 2: <idle> carrier: 0 (1897.344 MHz)
 RX: bytes 0 packets 0 a-crc-errors 0 x-crc-errors 0 z-crc-errors 0
 TX: bytes 0 packets 0
slot 4: <rx,sync> carrier: 9 (1881.792 MHz +0.896 kHz) signal level: -38.88dBm
 RX: bytes 5752 packets 719 a-crc-errors 63 x-crc-errors 0 z-crc-errors 0
 TX: bytes 0 packets 0
...
slot 10: <idle> carrier: 6 (1886.976 MHz)
 RX: bytes 0 packets 0 a-crc-errors 0 x-crc-errors 0 z-crc-errors 0
 TX: bytes 288 packets 6
slot 12: <rx,cipher> carrier: 2 (1893.888 MHz +0.216 kHz) signal level: -46.65dBm
 RX: bytes 6308 packets 142 a-crc-errors 37 x-crc-errors 35 z-crc-errors 36
 TX: bytes 0 packets 0
slot 14: <scanning> carrier: 0 (1897.344 MHz)
 RX: bytes 3528 packets 72 a-crc-errors 33 x-crc-errors 31 z-crc-errors 28
 TX: bytes 0 packets 0
...
slot 22: <scanning> carrier: 0 (1897.344 MHz)
 RX: bytes 1960 packets 40 a-crc-errors 40 x-crc-errors 38 z-crc-errors 37
 TX: bytes 0 packets 0

Implementation
Physical layer

The driver for the SC14421/14424 baseband
processors supports both FP and PP mode,
ciphering, scrambling and checksum calculations in
hardware, as well as RSSI and phase offset
measurements. Support for radio chips is
modularized, depending on the radio in use,
different RF-bands are supported either partially or
completely. The firmware is available as source
code and can be compiled during the build process
using the ASL macro assembler.

The PCI version additionally features blinking
antennas :)

Implementation
Physical layer

The virtual transceiver driver internally creates
“transceiver groups”. Transceivers in the same
group are able to communicate with each other.
Groups and transceivers can be added or removed
through a sysfs interface.

Each transceiver has an assigned position and
power level, which can be changed through the
sysfs interface and which is used to calculate the
signal strength at the receiver. This is intended for
handover testing, the implementation is not
complete yet however.

Implementation
MAC layer

From the lower side, the MAC layer's cell site's
function are driven by the transceiver layer, from
which it received frames, signal strength
measurements and timing information. As specified
by the standard, the CSF implements Traffic
Bearers, Dummy Bearer Control, Idle Receiver
Control etc.

One part not specified by the standard are “monitor
bearers”, which are basically passive (RX-only)
traffic bearers for monitoring two-way
communication between a PP and a FP.

Implementation
MAC layer

Communication between the CSF and the CCF is
implemented through “handles”, which contain a set
of function pointers, which can either be invoked
directly, or through a TIPC based network protocol.

The TIPC protocol encodes all parameters in
network packets, the receiving side decodes them
again and invokes the primitive.

Implementation
MAC layer

struct dect_csf_ops {
 int (*set_mode)(const struct dect_cell_handle *,
 enum dect_cluster_modes);
 int (*scan)(const struct dect_cell_handle *,
 const struct dect_llme_req *lreq,
 const struct dect_ari *, const struct dect_ari *);
 int (*preload)(const struct dect_cell_handle *,
 const struct dect_ari *, u8,
 const struct dect_si *);
 int (*enable)(const struct dect_cell_handle *);

 void (*page_req)(const struct dect_cell_handle *, struct sk_buff *);

 int (*tbc_establish_req)(const struct dect_cell_handle *,
 const struct dect_tbc_id *,
 const struct dect_channel_desc *,
 enum dect_mac_service_types, bool);
 int (*tbc_establish_res)(const struct dect_cell_handle *,
 const struct dect_tbc_id *);
 void (*tbc_dis_req)(const struct dect_cell_handle *,
 const struct dect_tbc_id *,
 ,,,

Implementation
MAC layer

struct dect_ccf_ops {
 int (*bind)(struct dect_cluster_handle *,
 struct dect_cell_handle *);
 void (*unbind)(struct dect_cluster_handle *,
 struct dect_cell_handle *);

 void (*time_ind)(struct dect_cluster_handle *,
 enum dect_timer_bases, u32, u8, u8);

 void (*scan_report)(const struct dect_cluster_handle *,
 const struct dect_scan_result *);
 void (*mac_info_ind)(const struct dect_cluster_handle *,
 const struct dect_idi *,
 const struct dect_si *);

 int (*tbc_establish_ind)(const struct dect_cluster_handle *,
 const struct dect_cell_handle *,
 const struct dect_tbc_id *,
 enum dect_mac_service_types, bool);
 int (*tbc_establish_cfm)(const struct dect_cluster_handle *,
 const struct dect_tbc_id *, bool, u8);

...

Implementation
MAC layer

This indirection is intended for building distributed multi-
cell system, but the network protocol hasn't been
actually tested yet.

The CCF implement Multi-Bearer Control, Bearer
handover, control and monitoring of Traffic Bearer setup
and configuration of the CSF. Currently only
connections using a single traffic bearer are supported.

I- and C-channel data received from the CSF is passed
to the higher DLC layer at frame boundaries or, in case
of the minimal delay audio service, at slot boundaries.

Implementation
Data Link Control layer

The DLC layer contains a generic part interacting
with the MAC layer and modules implementing the
U-plane and C-plane services.

The generic part performs MAC connection
management and up-/downlink routing of data
between the MAC layer and the C-plane/U-plane
based on the used logical data channel.

Implementation
Data Link Control layer

The C
S
 and C

F
 channel are routed from/to the C-

plane, the I channel is routed to the U-plane.

New MAC connections are indicated by the MAC
layer or requested from the MAC layer based on
service demands. When service demands cease,
the DLC layer releases MAC connections or, in case
of release indicated by the MAC layer, notifies the
higher layer entities.

Implementation
Data Link Control layer

The DLC C-plane consists of the Lc and LAPC
entities and a socket API, providing
SOCK_SEQPACKET sockets to userspace.

The socket API is in large parts similar to that of
other connection oriented socket families, it
supports sending and receiving packets, binding
sockets to specific addresses identifying the
FP/PP/connection instance, connecting and
listening for new connections.

The main difference to other families are a set of
DECT specific operation for handing ciphering.

Implementation
Data Link Control layer

The socket API contains two setsockopt options for
setting the cipher key of the underlying MAC
connection of a socket and requesting cipher
activation/deactivation from the lower layers.

Cipher state change notifications from the lower
layers are wrapped into messages and queued to
sockets error queue. In addition to dequeuing
packets from the normal receive queue, the
recvmsg() function dequeues these indications from
the error queue and supplies them to userspace in
the ancillary message data (cmsgs).

Implementation
Data Link Control layer

In the future the setsockopt options will be extended
to also support specifying lower layer service
attributes or indicating achieved service attributes to
userspace.

Implementation
Data Link Control layer

The generic part of the U-plane currently only supports
the FBn entity, which is basically a NOP and only
passes on data between the DLC and the higher LUx
entities.

Of the higher U-plane entities, only the LU1 entity
currently exists, which is used for the minimal delay
G.726 audio service. To userspace the LU1 entity
presents a standard stream socket API. It does not
support opening of new MAC connections directly
however, it can only be routed through existing MAC
connections established through the C-plane.

Implementation
Data Link Control layer

One thing diverging from the behaviour of regular
stream sockets is the support for seamless handover.
During handover, multiple bearers operating in different
time slots are supplying and requesting data from the
socket.

The data delivered to the bearers depends on the exact
point in time at which it is requested in order to let the
receiver switch between the bearers without noticable
interruptions. Data is therefore kept in a queue even
after delivery to the DLC and removed from the queue at
a rate corresponding to the transmission rate.

Implementation
Network layer

The NWK layer is implemented as a userspace library
called “libdect”. The library currently supports Call
Control (CC), Mobility Management (MM),
Supplementary Services (SS) and the Connectionless
Messaging Service (CLMS). Additionally it contains
support for the authentication, key generation, some
lower layer management operations and raw socket
frame reception and transmission.

Implementation
Network layer

To use the library, the application needs to supply a set
of callback functions for event and timer handling and a
set of primitives for each subsystem it wishes to use.

The registered primitives correspond to the indication
and confirmation primitives specified in ETSI EN 300
175-5, section 16.3 “Primitives to IWU”. The request and
response primitives are exported by libdect as regular
functions.

Implementation
Network layer

The application then opens a handle to a specific cluster
by calling dect_open_handle(&ops, cluster_name) and
waits for events (external or from libdect). In PP mode
the application additionally needs to specify its identity
by calling dect_pp_set_ipui(&ipui) before entering the
event loop.

Implementation
Network layer

struct dect_ops contains references to the subsystem
specific ops:

struct dect_ops {
 void *(*malloc)(size_t size);
 void (*free)(void *ptr);

 const struct dect_event_ops *event_ops;
 const struct dect_llme_ops_ *llme_ops;
 const struct dect_lce_ops *lce_ops;
 const struct dect_cc_ops *cc_ops;
 const struct dect_mm_ops *mm_ops;
 const struct dect_ss_ops *ss_ops;
 const struct dect_clms_ops *clms_ops;
 const struct dect_raw_ops *raw_ops;
};

Implementation
Network layer

Example of subsystem specific (CC) ops:
struct dect_cc_ops {
 size_t priv_size;
 void (*mncc_setup_ind)(struct dect_handle *dh, struct dect_call *call,
 struct dect_mncc_setup_param *param);
 void (*mncc_setup_ack_ind)(struct dect_handle *dh, struct dect_call *call,
 struct dect_mncc_setup_ack_param *param);

 void (*mncc_reject_ind)(struct dect_handle *dh, struct dect_call *call,
 enum dect_causes cause,
 struct dect_mncc_release_param *param);

 void (*mncc_call_proc_ind)(struct dect_handle *dh, struct dect_call *call,
 struct dect_mncc_call_proc_param *param);

 void (*mncc_alert_ind)(struct dect_handle *dh, struct dect_call *call,
 struct dect_mncc_alert_param *param);

 void (*mncc_connect_ind)(struct dect_handle *dh, struct dect_call *call,
 struct dect_mncc_connect_param *param);
 void (*mncc_connect_cfm)(struct dect_handle *dh, struct dect_call *call,
 struct dect_mncc_connect_param *param);

Implementation
Network layer

The arguments to the individual primitives are usually a
subsystem specific endpoint identifier, identifying an
instance of the subsystem (“call”), and a structure
encapsulating the information elements applicable to the
primitive.

Implementation
Network layer

The encapsulating argument structures as well as its
individual members are allocated by libdect and are
reference counted. The application can keep references
to either the entire collection of arguments or individual
information elements.

This is useful when a procedure is interrupted, f.i. to
perform authentication, to continue processing once the
interrupting procedure has completed. The information
elements can also be passed back to a different libdect
primitive, f.i. when performing feature or codec
negotiation. Arguments passed to libdect functions may
also be allocated on the stack.

Implementation
Network layer

Example of an argument structure: each struct embeds
a “struct dect_ie_collection”, on which common
operations like reference counting can be performed.

struct dect_mncc_modify_param {
 struct dect_ie_collection common;
 struct dect_ie_service_change_info *service_change_info;
 struct dect_ie_list iwu_attributes;
 struct dect_ie_list iwu_to_iwu;
 struct dect_ie_escape_to_proprietary *escape_to_proprietary;
};

struct dect_ie_collection {
 unsigned int refcnt;
 unsigned int size;
 struct dect_ie_common *ie[];
};

Implementation
Network layer

Information elements contain the parsed or to-be
constructed S-Format message contents. Similar to
IE collections, each Information Element embeds a
struct dect_ie_common for operations common to all
Information elements (reference counting and list
operations).

Values are usually defined as enums where
applicable with names corresponding to those
defined in the standard.

Example of an Information Element:

enum dect_setup_capabilities {
 DECT_SETUP_SELECTIVE_FAST_SETUP = 0x0,
 DECT_SETUP_NO_FAST_SETUP = 0x1,
 DECT_SETUP_COMPLETE_FAST_SETUP = 0x2,
 DECT_SETUP_COMPLETE_AND_SELECTIVE_FAST_SETUP = 0x3,
};

/** <<SETUP-CAPABILITY>> IE */
struct dect_ie_setup_capability {
 struct dect_ie_common common;
 enum dect_page_capabilities page_capability;
 enum dect_setup_capabilities setup_capability;
};

struct dect_ie_common {
 struct dect_ie_common *next;
 unsigned int refcnt;
};

Implementation
Network layer

Interaction with the library through primitives follows
the procedures specified in the standard, not much
to say except to look at the standard.

All primitives and many internal operations are
instrumented with debugging code, messages are
fully decoded during parsing and construction,
usually easy to trace what's going on if something
doesn't work.

Thanks

- Andreas Schuler and Matthias Wenzel from the
dedected.org project their initial Com-on-Air driver,
the reverse engineered DSC and DSAA algorithms
and help with working on the SC1442x firmware

- Harald Welte for hosting the dect.osmocom.org
website

- unnamed people from the DECT industry for
helping me understand the SC1442x chips, help
with the firmware and useful information

