
Copyright © Siemens AG 2010. All rights reserved.

Corporate Technology

Architecture of the Kernel-based
Virtual Machine (KVM)

Jan Kiszka, Siemens AG, CT T DE IT 1
Corporate Competence Center Embedded Linux

jan.kiszka@siemens.com

Slide 2 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Agenda

 Introduction

 Basic KVM model

 Memory

 API

 Optimizations

 Paravirtual devices

 Outlook

Slide 3 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Virtualization of Commodity Computers

CPU

MMU

Instruction
Set

Clocks
&

Timers

Busses
&

I/O Devices

Interrupt
Controllers

Memory

On-Chip
Resources

Slide 4 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Virtualizing the x86 Instruction Set Architecture

x86 originally virtualization “unfriendly”
 No hardware provisions
 Instructions behave differently depending on privilege context
 Performance suffered on trap-and-emulate
 CISC nature complicates instruction replacements

Early approaches to x86 virtualization
 Binary translation (e.g. VMware)
 Execute substitution code for privileged guest code
 May require substantial replacements to preserve illusion

 CPU paravirtualization (e.g Xen)
 Guest is aware of instruction restrictions
 Hypervisor provides replacement services (hypercalls)
 Raised abstraction levels for better performance

Slide 5 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Hardware-assisted x86 CPU Virtualization

Two variants
 Intel's Virtualization Technology, VT-x
 AMD-V (aka Secure Virtual Machine)

Identical core concept

CPU
3
2
1
0

Host
State

Guest
State

VCPU
3
2
1
0

Slide 6 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Advent and Evolution of KVM

Introduced to make VT-x/AMD-V available to user space
 Exposes virtualization features securely
 Interface: /dev/kvm

Merged quickly
 Available since 2.6.20 (2006)
 From first LKML posting to merge: 3 months
 One reason: originally 100% orthogonal to core kernel

Evolved significantly since then
 Ported to further architectures (s390, PowerPC, IA64)
 Always with latest x86 virtualization features
 Became recognized & driving part of Linux

Slide 7 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

The KVM Model

Processes can create
virtual machines

VMs can contain
 Memory
 Virtual CPUs
 In-kernel device models

Guest physical memory part of
creating process' address space

VCPUs run in process
execution contexts
 Process usually maps

VCPUs on threads

Hyper-
visor

Process

 Linux
 Kernel

Guest
Memory

CPU CPU

VCPU VCPU

Thread

CPU

KVM

Thread Thread

Slide 8 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Architectural Advantages of the KVM Model

Proximity of guest and user space hypervisor
 Only one address space switch: guest ↔ host
 Less rescheduling

Massive Linux kernel reuse
 Scheduler
 Memory management with swapping (though you don't what this)
 I/O stacks
 Power management
 Host CPU hot-plugging
…

Massive Linux user land reuse
 Network configuration
 Handling VM images
 Logging, tracing, debugging
 ...

Slide 9 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

VCPU Execution Flow (KVM View)

Execute native
guest code

Run
Update
context,

raise IRQs

Save Host,
Load Guest

State

Update
guest
state

VM entry VM exit
(with reason)

Save Guest,
Load Host

State

Handle
• I/O
• Invalid states
• ...

Handle
Signal

Handle
• In-Kernel I/O
• [vMMU]
• ...

Handle
Host
IRQ

K
er

n
el

U
se

r
S

p
ac

e
C

P
U

Slide 10 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

KVM Memory Model

Slot-based guest memory
 Maps guest physical to

host virtual memory
 Reconfigurable
 Supports dirty tracking

In-Kernel Virtual MMU

Coalesced MMIO
 Optimizes guest access to

RAM-like virtual MMIO regions

Out of scope
 Memory ballooning

(guest ↔ user space hypervisor)
 Kernel Same-page Merging

(not KVM-specific) Hypervisor
Address Space

RAM

Coalesced
MMIO

RAM

Unassigned

RAM

RAM

Guest
Address Space

Slide 11 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

KVM API Overview

Step #1: open /dev/kvm

Three groups of IOCTLs
 System-level requests
 VM-level requests
 VCPU-level requests

Per-group file descriptors
 /dev/kvm fd for system level
 Creating a VM or VCPU returns new fd

mmap on file descriptors
 VCPU: fast kernel-user communication segment
 Frequently read/modified part of VCPU state
 Includes coalesced MMIO backlog
 VM: map guest physical memory (deprecated)

Slide 12 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Basic KVM IOCTLs

KVM_CREATE_VM

KVM_SET_USER_MEMORY_REGION
KVM_CREATE_IRQCHIP / ...PIT (x86)
KVM_CREATE_VCPU

KVM_SET_REGS / ...SREGS / ...FPU / ...
KVM_SET_CPUID / ...MSRS / ...VCPU_EVENTS / ... (x86)
KVM_SET_LAPIC (x86)
KVM_RUN

Slide 13 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Optimizations of KVM

Hardware evolves quickly
 Near-native performance in guest mode
 Decreasing costs of mode switches
 Additional features avoid software solutions, thus exits
 Nested page tables
 TLB tagging
 APIC virtualization
 ...

What will continue to consume cycles?
 Code path between VM-exit and VM-entry
 Mode switches, i.e. the need to exit at all

Slide 14 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Lightweight vs. Heavy-weight VM-Exits

Exits cost time!
 Basic state switch in hardware
 Additional state switches in software
 Analyze exit reason

 Return to user space
 Analyze exit reason
 Obtain KVM state (VCPU, devices)
 Handle exit cause
 Write back states
 Invoke KVM_RUN

 Software-managed state switch
 Hardware state switch

>10.000 cycles

>7.000 cycles

 In-kernel APIC
 In-kernel IO-APIC + PIC
 Coalescing MMIO
 In-kernel instruction interpreter (detect MMIO access)
 In-kernel network stub (vhost-net)

Slide 15 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Optimizing Lightweight Exits

Let's get lazy!
 Perform only partial state switches
 Complete at latest possible point
 Late restoring for guest and host state

Candidates (x86)
 FPU
 Debug registers
 Model-specific registers (MSRs)

Requirements
 Usage detection when in guest mode
 Depends on hardware support
 Demand detection while in host mode
 Preemption notifiers
 User-return notifier

z
z

z

Slide 16 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Lazy MSR Switching

Why is this possible?
 Some MSRs unused by Linux
 Some MSRs only relevant when in user space
 Some are identical for host & guest

Approach
 Keep guest values of certain MSRs until...
 sched-out fires
 KVM_RUN IOCTL returns
 Keep others until user-return fires (Intel only)

Optimizations are vendor-specific

Exemplary saving:
 2000 cycles for guest → idle thread → guest

Slide 17 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Paravirtual Devices

Advantages
 Reduce VM exits or make them lightweight
 Improve I/O throughput & latency (less emulation)
 Compensates virtualization effects
 Enable direct host-guest interaction

Available interfaces & implementions
 virtio (PCI or alternative transports)
 Network
 Block
 Serial I/O (console, host-guest channel, …)
 Memory balloon
 File system (9P)
 Clock (x86 only)
 Via shared page + MSRs
 Enables safeTM TSC guest usage

user space
business
(primarily)

KVM
business

Slide 18 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

An Almost-In-Kernel Device –
vhost-net

Goal: high throughput /
low latency guest networking
 Avoid heavy exits
 Reduce packet copying
 No in-kernel QEMU, please!

vhost-net
worker
kthread

 KVM

VCPU

Linux
network

stack

virtio
ring &
buffers

memory
slot

table

ioeventfd

memory r/w

r/w

r

irqfd

hypervisor process

The vhost-net model
 Host user space opens and

configures kernel helper
 virtio as guest-host interface
 KVM interface: eventfd
 TX trigger → ioeventfd
 RX signal → irqfd
 Linux interface vie tap or macvtap

Enables multi-gigabit throughput

Slide 19 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

What's next?

Generic Linux improvements
 Transparent huge pages (mm topic)
 NUMA optimizations (scheduler topic)

Improve spin-lock-holder preemption effects
Zero-copy & multi-queue vhost-net
Further optimize exits
 Instruction interpretation (hardware may help)
 Faster in-kernel device dispatching

Nested virtualization as standard feature
 AMD-V bits already merged and working
 VT-x more complex but likely solvable

Hardware-assisted virtualization on non-x86
 PowerPC ISA 2.06
 ARMv7-A “Eagle” extensions

…

Slide 20 2010-09-23 © Siemens AG, Corporate TechnologyJan Kiszka, CT T DE IT 1

Thanks you for listening!

Questions?

