
Linux multi-core scalability

Oct 2009

Andi Kleen
Intel Corporation

andi@firstfloor.org

 Overview

 Scalability theory

 Linux history

 Some common scalability trouble-spots

 Application workarounds

 Motivation

 CPUs still getting faster single-threaded
 But more performance available by going parallel

 threaded CPUs dual-core quad-core hexa-core octo-core ...
 64-128 logical CPUs on standard machines upcoming
 Cannot cheat on scalability anymore

 High end machines larger
 Rely on limited workloads for now

 Memory sizes are growing
 Each CPU thread needs enough memory for its data (~1GB/thread)

 Multi-core servers support a lot of memory (64-128GB)
 Servers systems going towards TBs of RAM maximum

 Large memory size is a scalability problem
 Especially with 4K pages

 Some known problems in older kernels ("split LRU")

 Terminology

 Cores
 Core inside a CPU

 Threads (hardware)
 Multiple logical CPU per threaded core

 Sockets
 CPU package

 Nodes
 NUMA node with same memory latency

 Systems

 Laws

 Amdahl’s law:
 Parallelization speedup limited by performance of serial part

 Amdahl assumes that data set size stays the same

 In practice we tend to be more guided by Gustafson’s law
 More cores/memory allow to process larger datasets	 	

 Easier more coarse grained parallelization

 Parallelization classification

 Single job improvements
 For example weather model

 Parallelization of long running algorithm

 Not covered here

 "Library style" / "server style" of tuning
 Providing short lived operations for many parallel users

 Typical for kernels, network servers, some databases (OLTP)
 "requests" "syscalls" "transactions"

 Key is to parallelize access to shared data structures
 Let individual operations run independently

 Usually no need to parallelize inside individual operations

 Parallel data access tuning stages
 Goal: Let threads run independent

 Code locking "first step"
 One single lock per subsystem acquired by all code

 Limits scaling

 Coarse grained data locking "lock data not code"
 More locks: object locks, hash table lock

 Reference counters to handle object lifetime

 Fine grained data locking (optional)
 Even more locks (multiple per object)

 Per bucket lock in a hash

 Fancy locking (only for critical paths)
 Minimize communication (avoid false sharing)

 per-CPU data

 NUMA locality

 Lock less: relying on ordered updates, Read-Copy-Update (RCU)

 Communication latency

 For highly tuned parallel code often latency is the limiter
 Time to bounce the lock/refcount cache line from core A to B
 Cost depends on distance	

 Adds up with fine-grained locking

 Physical limitations due to signal propagation delays

 Solution is to localize data or do less locks

 Good news is that in the multi core future latencies are lower
 Compared to traditional large MP systems

 Multi-core has very fast communication inside the chip
 "shared caches"

 Modern interconnects are faster, lower latency
 But going off-chip is still very costly

 Lower latencies tolerate more communication

 Modern multi-core system of equivalent size is easier to program

 Problems & Solutions

 Parallelization leads to more complexity, more bugs
 Adds overhead for single thread

 Better debugging tools to find problems
 lockdep, tracing, kmemleak

 Locks, atomic operations add overhead
 Atomic operations are slow and synchronization costs

 Number of locks taken for simple syscalls high and growing

 Compile time options (for embedded), code patching
 Problem: small multi-core vs large MP system

 Still doesn’t solve inherent complexity

 Lock less techniques (help scaling, but even more complex)
 Code patching for atomic operations

 The locking cliff

 Still could fall off the locking cliff
 Overhead of locking, complexity gets worse with more tuning

 Can make further development difficult

 Sometimes solution is to not tune further
 If use case is not important enough

 Or speedup not large enough

 Or use new techniques
 lock-less approaches

 Radically new algorithms

 Linux scalability history

 2.0 big kernel lock for everything

 2.2 big kernel lock for most of kernel, interrupts own locks
 First usage on larger systems (16 CPUs)

 2.4 more fine grained locking, still several common global locks
 a lot of distributions back ported specific fixes

 2.6 serious tuning, ongoing
 New subsystems (multi queue scheduler, multi flow networking)

 Very few big kernel lock users left

 A few problematic locks like dcache, mm_sem

 Advanced lock-less tuning (Read-Copy-Update, others)

 For more details see paper

 Big Kernel Lock (BKL)

 Special lock that simulates old "explicit sleeping" semantics
 Still some users left in 2.6.31

 But usually not a serious problem (except on RT)

 File descriptor locking (flock et.al.)
 Some file systems (NFS, reiser)
 ioctls, some drivers, some VFS operations

 Not worth fixing for old drivers

 VFS

 In general most IO is parallel
 Depending on the file system, block driver

 namespace operations (dcache, icache) still have code locks
 When creating path names for example

 inode_lock / dcache_lock

 Some fast paths in dcache (nearly) lock-less when nothing changes
 Read only open faster

 Still significant cache line bouncing

 Can significantly limit scalability

 Effort under way to fine grain dcache/inode locking
 Difficult because lock coverage is not clearly defined

 Adds complexity

 Memory management scaling

 In general scales well between processes
 On older kernels make sure to have enough memory/core

 Coarse grained locking inside a process	(struct mm_struct)
 mm_sem semaphore to protect virtual memory mapping list

 page_table_lock to protect page tables

 Problems with parallel page faults, parallel brk/mmap

 mm_sem is a sleeping lock
 Most page fault operations (including zeroing) hold

 Convoying problems

 Problem for threaded HPC jobs, postgresql

 Network scaling

 1Gbit/s can be handled by single core on PC class
 ... unless you use encryption

 But 10Gbit/s still challenging

 Traditional single send queue, single receive queue per network
card

 Serializes sending, receiving

 Modern network cards support multi-queue
 Multiple send (TX) queues to avoid contention while sending

 Multiple receive (RX) queues to spread flows over CPUs

 Ongoing work in the network stack for better multi queue
 RX spreading requires some manual tuning for now

 Not supported in common production kernels (RHEL5)

 Application workarounds I

 Scaling a non parallel program
 Use Gustafson’s law! Work on more data files

 gcc: make -j$(getconfig _NPROCESSORS_ONLN)
 Requires proper Makefile dependencies

 media encoder for more files:
 find -name ’*.foo’ | xargs -n1 -P$(getconf _NPROCESSORS_ONLN) encoder

 Renderer:
 render multiple pictures

 Multi threaded program that does not scale to system size
 For example popular open source database

 Limit parallelism to its scaling limit
 Requires load tests to find out

 Possibly run multiple instances

 Application workarounds II

 Run multiple instances ("cluster in a box")
 Can use containers or virtualization

 Or just use multiple processes

 Run different programs on same system
 "server consolidation"

 Saves power and is easier to administrate

 Often more reliable (but single point of failure too)

 Or keep cores idle until needed
 Some spare capacity for peak loads is always a good idea

 Not that costly with modern power saving

 Conclusions

 Multi-core is hard

 Linux kernel is well prepared
 but still some more work to do

 Application tuning is the biggest challenge
 Is your application well prepared for multi-core?

 Standard toolbox of tuning techniques available

 Resources

 Paper: http://halobates.de/lk09-scalability.pdf
 Has more details in some areas

 Linux kernel source

 A lot of literature on parallelization available

 andi@firstfloor.org

 Backup

 Parallelization tuning cycle

 Measurement
 Profilers: oprofile, lockstat

 Analysis
 Identify locking, cache line bouncing hot spots

 Simple tuning
 Move to next tuning stage

 Measure again
 Stop or repeat with fancier tuning

